Edge domination in complete partite graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge domination in complete partite graphs

An edge dominating set in a graph G is a set of edges D such that every edge not in D is adjacent to an edge of D. An edge domatic partition of a graph C=(V, E) is a collection of pairwise-disjoint edge dominating sets of G whose union is E. The maximum size of an edge domatic partition of G is called the edge domatic number. In this paper, we study the edge domatic number of the complete parti...

متن کامل

Orientable Step Domination of Complete r-Partite Graphs

This paper provides lower orientable k-step domination number and upper orientable k-step domination number of complete r-partite graph for 1 ≤ k ≤ 2. It also proves that the intermediate value theorem holds for the complete r-partite graphs.

متن کامل

Minus domination number in k-partite graphs

A function f de1ned on the vertices of a graph G = (V; E); f :V → {−1; 0; 1} is a minus dominating function if the sum of its values over any closed neighborhood is at least one. The weight of a minus dominating function is f(V ) = ∑ v∈V f(v). The minus domination number of a graph G, denoted by −(G), equals the minimum weight of a minus dominating function of G. In this paper, a sharp lower bo...

متن کامل

Total minus domination in k-partite graphs

A function f defined on the vertices of a graph G = (V ,E), f : V → {−1, 0, 1} is a total minus dominating function (TMDF) if the sum of its values over any open neighborhood is at least one. The weight of a TMDF is the sum of its function values over all vertices. The total minus domination number, denoted by −t (G), of G is the minimum weight of a TMDF on G. In this paper, a sharp lower bound...

متن کامل

Edge Domination in Graphs

Let G be a (p, q)-graph with edge domination number γ′ and edge domatic number d′. In this paper we characterize connected graphs for which γ′ = p/2 and graphs for which γ′ + d′ = q + 1. We also characterize trees and unicyclic graphs for which γ′ = bp/2c and γ′ = q −∆′, where ∆′ denotes the maximum degree of an edge in G.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 1994

ISSN: 0012-365X

DOI: 10.1016/0012-365x(94)90229-1